Nonlinear iterative learning control for discriminating between disturbances

Leontine Aarnoudse (Corresponding author), Alexey Pavlov, Tom Oomen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
18 Downloads (Pure)

Samenvatting

Disturbances in iterative learning control (ILC) may be amplified if these vary from one iteration to the next, and reducing this amplification typically reduces the convergence speed. The aim of this paper is to resolve this trade-off and achieve fast convergence, robustness and small converged errors in ILC. A nonlinear learning approach is presented that uses the difference in amplitude characteristics of repeating and varying disturbances to adapt the learning gain. Monotonic convergence of the nonlinear ILC algorithm is established, resulting in a systematic design procedure. Application of the proposed algorithm demonstrates both fast convergence and small errors.

Originele taal-2Engels
Artikelnummer111902
Aantal pagina's9
TijdschriftAutomatica
Volume171
DOI's
StatusGepubliceerd - jan. 2025

Bibliografische nota

Publisher Copyright:
© 2024 The Author(s)

Vingerafdruk

Duik in de onderzoeksthema's van 'Nonlinear iterative learning control for discriminating between disturbances'. Samen vormen ze een unieke vingerafdruk.

Citeer dit