Nonlinear finite impulse response estimation using regularized neural networks

Roberto G. Ramírez-Chavarría, Maarten Schoukens

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

6 Citaten (Scopus)
210 Downloads (Pure)

Samenvatting

This work presents a new regularization scheme for identifying nonlinear finite impulse response (NFIR) models using artificial neural networks (ANN). Prior knowledge, such as the exponentially decaying nature of an impulse response, is included during the identification using a regularization approach inspired on the well-known regularized linear finite impulse response identification literature. More specifically the sensitivity of the modeled output with respect to the delayed input of the NFIR model is penalized to provide an exponentially decaying prior. The proposed method is illustrated and compared to other ANN regularization schemes on a simulation example.

Originele taal-2Engels
Pagina's (van-tot)174-179
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume54
Nummer van het tijdschrift7
DOI's
StatusGepubliceerd - 1 jul. 2021
Evenement19th IFAC Symposium on System Identification (SYSID 2021) - Virtual, Padova, Italië
Duur: 13 jul. 202116 jul. 2021
Congresnummer: 19
https://www.sysid2021.org/

Bibliografische nota

Publisher Copyright:
© 2021 The Authors.

Financiering

This work was supported by UNAM-PAPIIT TA100221.

Vingerafdruk

Duik in de onderzoeksthema's van 'Nonlinear finite impulse response estimation using regularized neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit