Samenvatting
Indirect data-driven predictive control (DPC) algorithms for nonlinear systems typically employ multi-step predictors, which are identified from input-output data using neural networks. In this paper we put forward a unifying multi-step prediction network architecture, i.e., the deep subspace prediction network (DSPN). We then prove that the DSPN architecture specialized to multi-layer-perceptron neural networks recovers the linear predictor corresponding to subspace predictive control for a sufficient number of hidden layer neurons. Hence, we establish a well-posed generalization of subspace predictive control for nonlinear systems. Moreover, we develop a regularized DSPN architecture that embeds a linear subspace predictor to improve extrapolation properties for non-training data. Simulation results on a benchmark inverted pendulum show that nonlinear DPC based on DSPN achieves high control performance for both noiseless and noisy data.
Originele taal-2 | Engels |
---|---|
Titel | 2023 62nd IEEE Conference on Decision and Control, CDC 2023 |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3770-3775 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 979-8-3503-0124-3 |
DOI's | |
Status | Gepubliceerd - 19 jan. 2024 |
Evenement | 2023 62nd IEEE Conference on Decision and Control (CDC) - Singapore, Singapore Duur: 13 dec. 2023 → 15 dec. 2023 Congresnummer: 62 |
Congres
Congres | 2023 62nd IEEE Conference on Decision and Control (CDC) |
---|---|
Verkorte titel | CDC 2023 |
Land/Regio | Singapore |
Stad | Singapore |
Periode | 13/12/23 → 15/12/23 |