Nonlinear Data-driven Predictive Control Design for Water Distribution Networks

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

In this paper, we present a novel method for controlling Water Distribution Networks (WDNs) using Data-driven Predictive Control (DPC). First, we identify through physical first-principle knowledge that a standard linear predictor is insufficient. However, by mapping the control input as a nonlinear function to a measurable intermediate variable, we can obtain an accurate data-driven predictor. This furthermore allows us to retain the standard cost function and constraints employed for the control of WDNs. The proposed algorithm is implemented and simulated on a small example WDN. The resulting nonlinear data-driven predictive control algorithm performs well on the network, showing the expected response.

Originele taal-2Engels
Titel2024 IEEE 63rd Conference on Decision and Control, CDC 2024
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's4040-4045
Aantal pagina's6
ISBN van elektronische versie979-8-3503-1633-9
DOI's
StatusGepubliceerd - 26 feb. 2025
Evenement63rd IEEE Conference on Decision and Control, CDC 2024 - Milan, Italië
Duur: 16 dec. 202419 dec. 2024

Congres

Congres63rd IEEE Conference on Decision and Control, CDC 2024
Land/RegioItalië
StadMilan
Periode16/12/2419/12/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Nonlinear Data-driven Predictive Control Design for Water Distribution Networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit