Non-linearity measures : a case study

H.N. Linssen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

25 Citaten (Scopus)
2 Downloads (Pure)

Samenvatting

An important problem in applied statistics is fitting a given model function f(fJ) with unknown parameters fJ to a data vector y . Minimizing the residual sum of squares provides the least squares estimates of p. If fUi) is linear in fJ the precision of these estimates is well· known. In a nonlinear case approximate (thauah asymptotically exact) confidence statements can be made. BEALE [I] introduced measures of nonlinea rity which can be used to indicate when approximate confidence statements are appropriate. GUTTMAN and MEETER [2] showed that in some. severely nonlinear. cases Beale's measures do not give the riaht indie-ation. In this paper two new nonlinearity measures are introduced and their use is illustrated on a practical problem described by WITT [3]. A more detailed discussion of the theoretical background can be found in references [1] and (2).
Originele taal-2Engels
Pagina's (van-tot)93-99
Aantal pagina's7
TijdschriftStatistica Neerlandica
Volume29
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 1975

Vingerafdruk

Duik in de onderzoeksthema's van 'Non-linearity measures : a case study'. Samen vormen ze een unieke vingerafdruk.

Citeer dit