Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism

A. Cathey (Corresponding author), M. Hoelzl, K. Lackner, G. T.A. Huijsmans, M. G. Dunne, E. Wolfrum, S. J.P. Pamela, F. Orain, S. Günter

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

33 Citaten (Scopus)

Samenvatting

A triggering mechanism responsible for the explosive onset of edge localised modes (ELMs) in fusion plasmas is identified by performing, for the first time, non-linear magnetohydrodynamic simulations of repetitive type-I ELMs. Briefly prior to the ELM crash, destabilising and stabilising terms are affected at different timescales by an increasingly ergodic magnetic field caused by non-linear interactions between the axisymmetric background plasma and growing non-axisymmetric perturbations. The separation of timescales prompts the explosive, i.e. faster than exponential, growth of an ELM crash which lasts ∼ 500μs. The duration and size of the simulated ELM crashes compare qualitatively well with type-I ELMs in ASDEX Upgrade. As expected for type-I ELMs, a direct proportionality between the heating power in the simulations and the ELM repetition frequency is obtained. The simulations presented here are a major step forward towards predictive modelling of ELMs and of the assessment of mitigation techniques in ITER and other future tokamaks.

Originele taal-2Engels
Artikelnummer124007
Aantal pagina's7
TijdschriftNuclear Fusion
Volume60
Nummer van het tijdschrift12
DOI's
StatusGepubliceerd - dec. 2020

Financiering

FinanciersFinanciernummer
Horizon 2020 Framework Programme633053

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Non-linear extended MHD simulations of type-I edge localised mode cycles in ASDEX Upgrade and their underlying triggering mechanism'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit