Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks

Luis A. Zavala Mondragon (Corresponding author), Peter M.J. Rongen, Javier Oliván Bescós, Peter H.N. de With, Fons van der Sommen

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

14 Citaten (Scopus)
260 Downloads (Pure)

Samenvatting

Encoding-decoding (ED) CNNs have demonstrated state-of-the-art performance for noise reduction over the past years. This has triggered the pursuit of better understanding the inner workings of such architectures, which has led to the theory of deep convolutional framelets (TDCF), revealing important links between signal processing and CNNs. Specifically, the TDCF demonstrates that ReLU CNNs induce low-rankness, since these models often do not satisfy the necessary redundancy to achieve perfect reconstruction (PR). In contrast, this paper explores CNNs that do meet the PR conditions. We demonstrate that in these type of CNNs soft shrinkage and PR can be assumed. Furthermore, based on our explorations we propose the learned wavelet-frame shrinkage network, or LWFSN and its residual counterpart, the rLWFSN. The ED path of the (r)LWFSN complies with the PR conditions, while the shrinkage stage is based on the linear expansion of thresholds proposed Blu and Luisier. In addition, the LWFSN has only a fraction of the training parameters (<1%) of conventional CNNs, very small inference times, low memory footprint, while still achieving performance close to state-of-the-art alternatives, such as the tight frame (TF) U-Net and FBPConvNet, in low-dose CT denoising.

Originele taal-2Engels
Artikelnummer9721076
Pagina's (van-tot)2048-2066
Aantal pagina's19
TijdschriftIEEE Transactions on Medical Imaging
Volume41
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - aug. 2022

Financiering

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme780026

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Noise Reduction in CT Using Learned Wavelet-Frame Shrinkage Networks'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit