New exact and numerical solutions of the (convection-)diffusion kernels on SE(3)

J.M. Portegies, R. Duits

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

66 Downloads (Pure)


We consider hypo-elliptic diffusion and convection-diffusion on R3⋊S2, the quotient of the Lie group of rigid body motions SE(3) in which group elements are equivalent if they are equal up to a rotation around the reference axis. We show that we can derive expressions for the convolution kernels in terms of eigenfunctions of the PDE, by extending the approach for the SE(2) case. This goes via application of the Fourier transform of the PDE in the spatial variables, yielding a second order differential operator. We show that the eigenfunctions of this operator can be expressed as (generalized) spheroidal wave functions. The same exact formulas are derived via the Fourier transform on SE(3). We consider both the evolution itself, as well as the time-integrated process that corresponds to the resolvent operator. Furthermore, we have extended from SE(2) to SE(3) a standard numerical procedure for the computation of the solution kernels that is directly related to the exact solutions. Finally, we provide a novel analytic approximation of the kernels that we briefly compare to the exact kernels.
Originele taal-2Engels
Pagina's (van-tot)1-39
Nummer van het tijdschrift1604.03843
StatusGepubliceerd - 2016

Vingerafdruk Duik in de onderzoeksthema's van 'New exact and numerical solutions of the (convection-)diffusion kernels on SE(3)'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit