Neural scoring of logical inferences from data using feedback

Allmin Susaiyah (Corresponding author), Aki Härmä, Ehud Reiter, Milan Petković

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)
132 Downloads (Pure)

Samenvatting

Insights derived from wearable sensors in smartwatches or sleep trackers can help users in approaching their healthy lifestyle goals. These insights should indicate significant inferences from user behaviour and their generation should adapt automatically to the preferences and goals of the user. In this paper, we propose a neural network model that generates personalised lifestyle insights based on a model of their significance, and feedback from the user. Simulated analysis of our model shows its ability to assign high scores to a) insights with statistically significant behaviour patterns and b) topics related to simple or complex user preferences at any given time. We believe that the proposed neural networks model could be adapted for any application that needs user feedback to score logical inferences from data.

Originele taal-2Engels
Pagina's (van-tot)90-99
Aantal pagina's10
TijdschriftInternational Journal of Interactive Multimedia and Artificial Intelligence
Volume6
Nummer van het tijdschrift5
DOI's
StatusGepubliceerd - 2021

Bibliografische nota

Publisher Copyright:
© 2021, Universidad Internacional de la Rioja. All rights reserved.

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural scoring of logical inferences from data using feedback'. Samen vormen ze een unieke vingerafdruk.

Citeer dit