Neural network hyperparameter tuning for online model parameter updating using inverse mapping models

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

84 Downloads (Pure)

Samenvatting

To decrease the mismatch between a model and a physical system, physically interpretable model parameter values of nonlinear systems can be updated in real-time by using the Inverse Mapping Parameter Updating (IMPU) method. In this method, an Inverse Mapping Model (IMM), constituted by an Artificial Neural Network (ANN), is trained, offline, using simulated data that consists of features of output responses (ANN inputs) and corresponding parameter values (ANN outputs). In an online phase, the trained ANN can then be used to infer parameter values with high computational efficiency. The (non-trivial) choice of ANN-hyperparameters, e.g., ANN structure and training settings, may significantly influence the accuracy of the trained ANN. Therefore, this work discusses multiple ANN-hyperparameter tuning techniques to increase the accuracy of the IMPU method, of which the Bayesian search technique is the most promising considering accuracy and efficiency as it learns from previously evaluated hyperparameter values.
Originele taal-2Engels
Aantal pagina's1
StatusGepubliceerd - 2023
EvenementNonlinear Dynamics Conference - Rome, Italië
Duur: 18 jun. 202322 jun. 2023
Congresnummer: 3
https://nodycon.org/2023/

Congres

CongresNonlinear Dynamics Conference
Verkorte titelNODYCON
Land/RegioItalië
StadRome
Periode18/06/2322/06/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural network hyperparameter tuning for online model parameter updating using inverse mapping models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit