Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS

O. Meneghini (Corresponding author), G. Snoep, B. C. Lyons, J. McClenaghan, C. S. Imai, B. Grierson, S. P. Smith, G. M. Staebler, P. B. Snyder, J. Candy, E. Belli, L. Lao, J. M. Park, J. Citrin, T. L. Cordemiglia, A. Tema, S. Mordijck

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

An integrated modeling workflow capable of finding the steady-state plasma solution with self-consistent core transport, pedestal structure, current profile, and plasma equilibrium physics has been developed and tested against a DIII-D discharge. Key features of the achieved core-pedestal coupled workflow are its ability to account for the transport of impurities in the plasma self-consistently, as well as its use of machine learning accelerated models for the pedestal structure and for the turbulent transport physics. Notably, the coupled workflow is implemented within the One Modeling Framework for Integrated Tasks (OMFIT) framework, and makes use of the ITER integrated modeling and analysis suite data structure for exchanging data among the physics codes that are involved in the simulations. Such technical advance has been facilitated by the development of a new numerical library named ordered multidimensional arrays structure.

Originele taal-2Engels
Artikelnummer026006
Aantal pagina's14
TijdschriftNuclear Fusion
Volume61
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - feb 2021

Vingerafdruk Duik in de onderzoeksthema's van 'Neural-network accelerated coupled core-pedestal simulations with self-consistent transport of impurities and compatible with ITER IMAS'. Samen vormen ze een unieke vingerafdruk.

Citeer dit