Neural Langevin Dynamics: Towards Interpretable Neural Stochastic Differential Equations

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

18 Downloads (Pure)

Samenvatting

Neural Stochastic Differential Equations (NSDE) have been trained as both Variational Autoencoders, and as GANs. However, the resulting Stochastic Differential Equations can be hard to interpret or analyse due to the generic nature of the drift and diffusion fields. By restricting our NSDE to be of the form of Langevin dynamics and training it as a VAE, we obtain NSDEs that lend themselves to more elaborate analysis and to a wider range of visualisation techniques than a generic NSDE. More specifically, we obtain an energy landscape, the minima of which are in one-to-one correspondence with latent states underlying the used data. This not only allows us to detect states underlying the data dynamics in an unsupervised manner but also to infer the distribution of time spent in each state according to the learned SDE. In general, restricting an NSDE to Langevin dynamics enables the use of a large set of tools from computational molecular dynamics for the analysis of the obtained results.

Originele taal-2Engels
TitelProceedings of the 5th Northern Lights Deep Learning Conference
RedacteurenTetiana Lutchyn, Adín Ramírez Rivera, Benjamin Ricaud
UitgeverijPMLR
Pagina's130-137
Aantal pagina's8
StatusGepubliceerd - 2024
Evenement5th Northern Lights Deep Learning Conference, NLDL 2024 - Tromso, Noorwegen
Duur: 9 jan. 202411 jan. 2024

Publicatie series

NaamProceedings of Machine Learning Research (PMLR)
Volume233
ISSN van elektronische versie2640-3498

Congres

Congres5th Northern Lights Deep Learning Conference, NLDL 2024
Land/RegioNoorwegen
StadTromso
Periode9/01/2411/01/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural Langevin Dynamics: Towards Interpretable Neural Stochastic Differential Equations'. Samen vormen ze een unieke vingerafdruk.

Citeer dit