Neural Combinatorial Optimization for Stochastic Flexible Job Shop Scheduling Problems

Igor G. Smit, Yaoxin Wu (Corresponderende auteur), Pavel Troubil, Yingqian Zhang, Wim P. M. Nuijten

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

23 Downloads (Pure)

Samenvatting

Neural combinatorial optimization (NCO) has gained significant attention due to the potential of deep learning to efficiently solve combinatorial optimization problems. NCO has been widely applied to job shop scheduling problems (JSPs) with the current focus predominantly on deterministic problems. In this paper, we propose a novel attention-based scenario processing module (SPM) to extend NCO methods for solving stochastic JSPs. Our approach explicitly incorporates stochastic information by an attention mechanism that captures the embedding of sampled scenarios (i.e., an approximation of stochasticity). Fed with the embedding, the base neural network is intervened by the attended scenarios, which accordingly learns an effective policy under stochasticity. We also propose a training paradigm that works harmoniously with either the expected makespan or Value-at-Risk objective. Results demonstrate that our approach outperforms existing learning and non-learning methods for the flexible JSP problem with stochastic processing times on a variety of instances. In addition, our approach holds significant generalizability to varied numbers of scenarios and disparate distributions.
Originele taal-2Engels
TitelProceedings of the 39th Annual AAAI Conference on Artificial Intelligence
SubtitelAAAI-25 Technical Tracks 25
RedacteurenToby Walsh, Julie Shah, Zico Kolter
UitgeverijAAAI Press
Pagina's26678-26687
Aantal pagina's10
ISBN van geprinte versie978-1-57735-897-8
DOI's
StatusGepubliceerd - 11 apr. 2025
Evenement39th Annual AAAI Conference on Artificial Intelligence, AAAI-25 - Philadelphia, Verenigde Staten van Amerika
Duur: 25 feb. 20254 mrt. 2025

Publicatie series

NaamProceedings of the AAAI Conference on Artificial Intelligence
Nummer25
Volume39
ISSN van geprinte versie2159-5399
ISSN van elektronische versie2374-3468

Congres

Congres39th Annual AAAI Conference on Artificial Intelligence, AAAI-25
Verkorte titelAAAI-25
Land/RegioVerenigde Staten van Amerika
StadPhiladelphia
Periode25/02/254/03/25

Financiering

The LEO (Learning and Explaining Optimization) project is co-funded by Holland High Tech | TKI HSTM via the PPS allowance scheme for public-private partnerships. This work used the Dutch national e-infrastructure with the support of the SURF Cooperative using grant no. EINF-10518.

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural Combinatorial Optimization for Stochastic Flexible Job Shop Scheduling Problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit