Neural Architecture Search for Visual Anomaly Segmentation

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Downloads (Pure)

Samenvatting

This paper presents the first application of neural architecture search to the complex task of segmenting visual anomalies. Measurement of anomaly segmentation performance is challenging due to imbalanced anomaly pixels, varying region areas, and various types of anomalies. First, the region-weighted Average Precision (rwAP) metric is proposed as an alternative to existing metrics, which does not need to be limited to a specific maximum false positive rate. Second, the AutoPatch neural architecture search method is proposed, which enables efficient segmentation of visual anomalies without any training. By leveraging a pre-trained supernet, a black-box optimization algorithm can directly minimize computational complexity and maximize performance on a small validation set of anomalous examples. Finally, compelling results are presented on the widely studied MVTec dataset, demonstrating that AutoPatch outperforms the current state-of-the-art with lower computational complexity, using only one example per type of anomaly. The results highlight the potential of automated machine learning to optimize throughput in industrial quality control. The code for AutoPatch is available at: \url{https://github.com/tommiekerssies/AutoPatch}.
Originele taal-2Engels
TitelProceedings of the Second International Conference on Automated Machine Learning, AutoML 2023
RedacteurenAleksandra Faust, Roman Garnett, Colin White, Frank Hutter, Jacob R. Gardner
UitgeverijPMLR
Aantal pagina's14
StatusGepubliceerd - 2023
Evenement2nd International Conference on Automated Machine Learning, AutoML 2023 - Potsdam, Duitsland
Duur: 12 nov. 202315 nov. 2023

Publicatie series

NaamProceedings of Machine Learning Research
Volume224
ISSN van elektronische versie2640-3498

Congres

Congres2nd International Conference on Automated Machine Learning, AutoML 2023
Land/RegioDuitsland
StadPotsdam
Periode12/11/2315/11/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Neural Architecture Search for Visual Anomaly Segmentation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit