Samenvatting
Targeted drug delivery critically depends on the binding selectivity of cargo-transporting colloidal particles. Extensive theoretical work has shown that two factors are necessary to achieve high selectivity for a threshold receptor density: multivalency and weak interactions. Here, we study a model system of DNA-coated particles with multivalent and weak interactions that mimics ligand-receptor interactions between particles and cells. Using an optomagnetic cluster experiment, particle aggregation rates are measured as a function of ligand and receptor densities. The measured aggregation rates show that the binding becomes more selective for shorter DNA ligand-receptor pairs, proving that multivalent weak interactions lead to enhanced selectivity in interparticle binding. Simulations confirm the experimental findings and show the role of ligand-receptor dissociation in the selectivity of the weak multivalent binding.
Originele taal-2 | Engels |
---|---|
Pagina's (van-tot) | 22690-22697 |
Aantal pagina's | 8 |
Tijdschrift | Proceedings of the National Academy of Sciences of the United States of America (PNAS) |
Volume | 117 |
Nummer van het tijdschrift | 37 |
Vroegere onlinedatum | 28 aug. 2020 |
DOI's | |
Status | Gepubliceerd - 15 sep. 2020 |