Samenvatting
Multirate time stepping is a numerical technique for efficiently solving large-scale ordinary differential equations (ODEs) with widely different time scales localized over the components. This technique enables one to use large time steps for slowly time-varying components, and small steps for rapidly varying ones. In this paper we describe a self-adjusting multirate time stepping strategy, in which the step size for a particular component is determined by its own local temporal variation, instead of using a single step size for the whole system. We primarily consider Rosenbrock methods, suitable for stiff or mildly stiff ODEs.
Originele taal-2 | Engels |
---|---|
Titel | Proceedings of the International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2007) 16-20 September 2007, Corfu, Greece |
Redacteuren | T.E. Simos, G. Psihoyios, C. Tsi touras |
Plaats van productie | Melville NY |
Uitgeverij | American Institute of Physics |
Pagina's | 492-495 |
ISBN van geprinte versie | 978-0-7354-0447-2 |
DOI's | |
Status | Gepubliceerd - 2007 |
Evenement | 5th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2007) - Hotel Marbella, Corfu, Griekenland Duur: 16 sep. 2007 → 20 sep. 2007 Congresnummer: 5 |
Publicatie series
Naam | AIP Conference Proceedings |
---|---|
Volume | 936 |
ISSN van geprinte versie | 0094-243X |
Congres
Congres | 5th International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2007) |
---|---|
Verkorte titel | ICNAAM 2007 |
Land/Regio | Griekenland |
Stad | Corfu |
Periode | 16/09/07 → 20/09/07 |
Ander | ICNAAM 2007, Corfu, Greece |