Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain Tumor Segmentation in MRI scans

Navchetan Awasthi, Rohit Pardasani, Swati Gupta

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

5 Downloads (Pure)

Samenvatting

Gliomas are one of the most frequent brain tumors and are classified into high grade and low grade gliomas. The segmentation of various regions such as tumor core, enhancing tumor etc. plays an important role in determining severity and prognosis. Here, we have developed a multi-threshold model based on attention U-Net for identification of various regions of the tumor in magnetic resonance imaging (MRI). We propose a multi-path segmentation and built three separate models for the different regions of interest. The proposed model achieved mean Dice Coefficient of 0.59, 0.72, and 0.61 for enhancing tumor, whole tumor and tumor core respectively on the training dataset. The same model gave mean Dice Coefficient of 0.57, 0.73, and 0.61 on the validation dataset and 0.59, 0.72, and 0.57 on the test dataset.
Originele taal-2Engels
Artikelnummer2101.12404
Aantal pagina's11
TijdschriftarXiv
Volume2021
StatusGepubliceerd - 29 jan 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Multi-Threshold Attention U-Net (MTAU) based Model for Multimodal Brain Tumor Segmentation in MRI scans'. Samen vormen ze een unieke vingerafdruk.

Citeer dit