Multi-modality in augmented Lagrangian coordination for distributed optimal design

S. Tosserams, L.F.P. Etman, J.E. Rooda

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    16 Citaten (Scopus)
    146 Downloads (Pure)

    Samenvatting

    This paper presents an empirical study of the convergence characteristics of augmented Lagrangian coordination (ALC) for solving multi-modal optimization problems in a distributed fashion. A number of test problems that do not satisfy all assumptions of the convergence proof for ALC are selected to demonstrate the convergence characteristics of ALC algorithms. When only a local search is employed at the subproblems, local solutions to the original problem are often attained. When a global search is performed at subproblems, global solutions to the original, non-decomposed problem are found for many of the examples. Although these findings are promising, ALC with a global subproblem search may yield only local solutions in the case of non-convex coupling functions or disconnected feasible domains. Results indicate that for these examples both the starting point and the sequence in which subproblems are solved determines which solution is obtained. We illustrate that the main cause for this behavior lies in the alternating minimization inner loop, which is inherently of a local nature. © 2009 The Author(s).
    Originele taal-2Engels
    Pagina's (van-tot)329-352
    TijdschriftStructural and Multidisciplinary Optimization
    Volume40
    Nummer van het tijdschrift1-6
    DOI's
    StatusGepubliceerd - 2010

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Multi-modality in augmented Lagrangian coordination for distributed optimal design'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit