Multi-modal classification of polyp malignancy using CNN features with balanced class augmentation

R. Fonollá, F. van der Sommen, R.M. Schreuder, E.J. Schoon, P.H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

26 Citaten (Scopus)

Samenvatting

Colorectal polyps are an indicator of colorectal cancer (CRC). Classification of polyps during colonoscopy is still a challenge for which many medical experts have come up with visual models albeit with limited success. In this paper, a classification approach is proposed to differentiate between polyp malignancy, using features extracted from the Global Average Pooling (GAP) layer of a Convolutional Neural Network (CNNs). Two recent endoscopic modalities are used to improve the algorithm prediction: Blue Laser Imaging (BLI) and Linked Color Imaging (LCI). Furthermore, a new strategy of per-class data augmentation is adopted to tackle an unbalanced class distribution and to improve the decision of the classifiers. As a result, we increase the performance compared to state-of-the-art methods (0.97 vs 0.90 AUC). Our method for automatic polyp malignancy classification facilitates future advances towards patient safety and may avoid time-consuming and costly histopathological assessment.
Originele taal-2Engels
TitelISBI 2019 - 2019 IEEE International Symposium on Biomedical Imaging
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's74-78
Aantal pagina's5
ISBN van elektronische versie978-1-5386-3641-1
DOI's
StatusGepubliceerd - 1 apr. 2019
Evenement16th IEEE International Symposium on Biomedical Imaging (ISBI 2019) - Venice, Italië
Duur: 8 apr. 201911 apr. 2019
Congresnummer: 16

Congres

Congres16th IEEE International Symposium on Biomedical Imaging (ISBI 2019)
Verkorte titelISBI 2019
Land/RegioItalië
StadVenice
Periode8/04/1911/04/19

Trefwoorden

  • Polyp classification
  • Blue Laser Imaging
  • BLI
  • Linked Color Imaging
  • LCI
  • CNN
  • Data Augmentation
  • SVM

Vingerafdruk

Duik in de onderzoeksthema's van 'Multi-modal classification of polyp malignancy using CNN features with balanced class augmentation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit