Samenvatting
Low ambient temperatures, cold starts and city drives interrupted by still stand phases represent major challenges for energy and emission management of hybrid-electric vehicles (HEVs). Large time constants of battery and thermal systems, require long horizons to optimize overall system performance and avoid constraint violations, such as battery energy or real-world emission targets. In this work, a local online controller is extended with a coarse global optimization to predict optimal state trajectories. Manageable computational demand of this upper level optimization is achieved by a combination of model approximations, dimension reduction and coarse sampling. An online adaptation mechanism is implemented for the low-level controller to deal with imprecise predictions and system uncertainty. The proposed multi-level control strategy provides performance within 5% of the global optimum for 100 real world driving cycles using a constant parametrization without cycle-specific tuning.
Originele taal-2 | Engels |
---|---|
Titel | 2022 European Control Conference, ECC 2022 |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 1198-1203 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 9783907144077 |
DOI's | |
Status | Gepubliceerd - 2022 |
Evenement | 2022 European Control Conference (ECC) - Imperial College London, London, Verenigd Koninkrijk Duur: 12 jul. 2022 → 15 jul. 2022 https://ecc22.euca-ecc.org/ |
Congres
Congres | 2022 European Control Conference (ECC) |
---|---|
Verkorte titel | ECC 22 |
Land/Regio | Verenigd Koninkrijk |
Stad | London |
Periode | 12/07/22 → 15/07/22 |
Internet adres |