Morphological hat-transform scale spaces and their use in pattern classification

A.C. Jalba, M.H.F. Wilkinson, J.B.T.M. Roerdink

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    64 Citaten (Scopus)


    In this paper we present a multi-scale method based on mathematical morphology which can successfully be used in pattern classification tasks. A connected operator similar to the morphological hat-transform is defined, and two scale-space representations are built. The most important features are extracted from the scale spaces by unsupervised cluster analysis, and the resulting pattern vectors provide the input of a decision tree classifier. We report classification results obtained using contour features, texture features, and a combination of these. The method has been tested on two large sets, a database of diatom images and a set of images from the Brodatz texture database. For the diatom images, the method is applied twice, once on the curvature of the outline (contour), and once on the grey-scale image itself.
    Originele taal-2Engels
    Pagina's (van-tot)901-915
    TijdschriftPattern Recognition
    Nummer van het tijdschrift5
    StatusGepubliceerd - 2004


    Duik in de onderzoeksthema's van 'Morphological hat-transform scale spaces and their use in pattern classification'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit