More consequences of falsifying SETH and the orthogonal vectors conjecture

Amir Abboud, Karl Bringmann, Holger Dell, Jesper Nederlof

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

62 Downloads (Pure)

Samenvatting

The Strong Exponential Time Hypothesis and the OV-conjecture are two popular hardness assumptions used to prove a plethora of lower bounds, especially in the realm of polynomial-time algorithms. The OV-conjecture in moderate dimension states there is no $\epsilon>0$ for which an $O(N^{2-\epsilon})\mathrm{poly}(D)$ time algorithm can decide whether there is a pair of orthogonal vectors in a given set of size $N$ that contains $D$-dimensional binary vectors. We strengthen the evidence for these hardness assumptions. In particular, we show that if the OV-conjecture fails, then two problems for which we are far from obtaining even tiny improvements over exhaustive search would have surprisingly fast algorithms. If the OV conjecture is false, then there is a fixed $\epsilon>0$ such that: (1) For all $d$ and all large enough $k$, there is a randomized algorithm that takes $O(n^{(1-\epsilon)k})$ time to solve the Zero-Weight-$k$-Clique and Min-Weight-$k$-Clique problems on $d$-hypergraphs with $n$ vertices. As a consequence, the OV-conjecture is implied by the Weighted Clique conjecture. (2) For all $c$, the satisfiability of sparse TC1 circuits on $n$ inputs (that is, circuits with $cn$ wires, depth $c\log n$, and negation, AND, OR, and threshold gates) can be computed in time ${O((2-\epsilon)^n)}$.
Originele taal-2Engels
Artikelnummer1805.08554
TijdschriftarXiv
StatusGepubliceerd - 22 mei 2018

Bibliografische nota

To appear in the proceedings of STOC'18

Trefwoorden

  • cs.CC
  • cs.DS

Vingerafdruk

Duik in de onderzoeksthema's van 'More consequences of falsifying SETH and the orthogonal vectors conjecture'. Samen vormen ze een unieke vingerafdruk.

Citeer dit