Monotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes

W. Hundsdorfer, A. Mozartova, V. Savcenco

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

9 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

Multirate schemes for conservation laws or convection-dominated problems seem to come in two flavors: schemes that are locally inconsistent, and schemes that lack mass-conservation. In this paper these two defects are discussed for one-dimensional conservation laws. Particular attention will be given to monotonicity properties of the multirate schemes, such as maximum principles and the total variation diminishing (TVD) property. The study of these properties will be done within the framework of partitioned Runge-Kutta methods. It will also be seen that the incompatibility of consistency and mass-conservation holds for ‘genuine’ multirate schemes, but not for general partitioned methods
Originele taal-2Engels
TitelRecent Developments in the Numerics of Nonlinear Hyperbolic Conservation Laws
RedacteurenR. Ansorge, H. Bijl, A. Meister, T. Sonar
UitgeverijVieweg
Pagina's177-195
ISBN van geprinte versie978-364233220-3
DOI's
StatusGepubliceerd - 2013

Publicatie series

NaamNotes on Numerical Fluid Mechanics and Multidisciplinary Design
Volume120
ISSN van geprinte versie0179-9614

Vingerafdruk

Duik in de onderzoeksthema's van 'Monotonicity conditions for multirate and partitioned explicit Runge-Kutta schemes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit