Monitoring nutrient transport in tissue-engineered grafts

Jun Liu, Janneke Hilderink, Tom A.M. Groothuis, Cees Otto, Clemens A. Van Blitterswijk, Jan de Boer

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

27 Citaten (Scopus)


Limited nutrient diffusion in three-dimensional (3D) constructs is a major concern in tissue engineering. Therefore, monitoring nutrient availability and diffusion within a scaffold is an important asset. Since nutrients come in various forms, we have investigated the diffusion of the oxygen, luciferin and dextran molecules within tissue-engineered constructs using optical imaging technologies. First, oxygen availability and diffusion were investigated, using transgenic cell lines in which a hypoxia-responsive element drives expression of the green fluorescent protein gene. Using confocal imaging, we observed oxygen limitation, starting at around 200 μm from the periphery in the context of agarose gel with 1 million CHO cells. Diffusion of luciferin was monitored real-time in agarose gels using a cell line in which the luciferase gene was driven by a constitutively active CMV promoter. Gel concentration affected the diffusion rate of luciferin. Furthermore, we assessed the diffusion rates of fluorescent dextran molecules of different molecular weights in biomaterials by fluorescence recovery after photobleaching (FRAP) and observed that diffusion depended on both molecular size and gel concentration. In conclusion, we have validated a set of efficient tools to investigate molecular diffusion of a range of molecules and to optimize biomaterials design in order to improve nutrient delivery.

Originele taal-2Engels
Pagina's (van-tot)952-960
Aantal pagina's9
TijdschriftJournal of Tissue Engineering and Regenerative Medicine
Nummer van het tijdschrift8
StatusGepubliceerd - 1 aug. 2015
Extern gepubliceerdJa


Duik in de onderzoeksthema's van 'Monitoring nutrient transport in tissue-engineered grafts'. Samen vormen ze een unieke vingerafdruk.

Citeer dit