Modulated Hermite series expansions and the time-bandwidth product

A.C. Brinker, den, B.E. Sarroukh

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)
1 Downloads (Pure)


The harmonically modulated Hermite series constitute an orthonormal basis in the Hilbert space of square-integrable functions. This basis comprises three free parameters, namely a translation, a modulation, and a scale factor. In practical situations, we are interested in series expansions that are as compact as possible. We can use the free parameters as the means to obtain a compact series expansion for a given function. We choose as the compactness criterion the first-order moment of the energy distribution in the transform domain. It is shown that, in that case, the optimum compaction parameters can be given in a simple analytic form depending on signal measurements only. Furthermore, these parameters have a clear physical interpretation, and the minimum of the compactness criterion is directly related to the time-bandwidth product.
Originele taal-2Engels
Pagina's (van-tot)243-250
Aantal pagina's8
TijdschriftSignal Processing
Nummer van het tijdschrift2
StatusGepubliceerd - 2000


Duik in de onderzoeksthema's van 'Modulated Hermite series expansions and the time-bandwidth product'. Samen vormen ze een unieke vingerafdruk.

Citeer dit