Modeling clinical assessor intervariability using deep hypersphere encoder-decoder networks

Joost van der Putten (Corresponding author), Fons van der Sommen, Jeroen de Groof, Maarten Struyvenberg, Svitlana Zinger, Wouter Curvers, Erik Schoon, Jacques Bergman, Peter H.N. de With

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In medical imaging, a proper gold-standard ground truth as, e.g., annotated segmentations by assessors or experts is lacking or only scarcely available and suffers from large intervariability in those segmentations. Most state-of-the-art segmentation models do not take inter-observer variability into account and are fully deterministic in nature. In this work, we propose hypersphere encoder–decoder networks in combination with dynamic leaky ReLUs, as a new method to explicitly incorporate inter-observer variability into a segmentation model. With this model, we can then generate multiple proposals based on the inter-observer agreement. As a result, the output segmentations of the proposed model can be tuned to typical margins inherent to the ambiguity in the data. For experimental validation, we provide a proof of concept on a toy data set as well as show improved segmentation results on two medical data sets. The proposed method has several advantages over current state-of-the-art segmentation models such as interpretability in the uncertainty of segmentation borders. Experiments with a medical localization problem show that it offers improved biopsy localizations, which are on average 12% closer to the optimal biopsy location.
Originele taal-2Engels
Pagina's (van-tot)10705–10717
Aantal pagina's13
TijdschriftNeural Computing and Applications
Volume32
Nummer van het tijdschrift14
Vroegere onlinedatum21 nov. 2019
DOI's
StatusGepubliceerd - 1 jul. 2020

Vingerafdruk

Duik in de onderzoeksthema's van 'Modeling clinical assessor intervariability using deep hypersphere encoder-decoder networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit