Samenvatting
In order to ensure that a digital twin accurately describes the dynamic behavior of its corresponding physical system, model updating is typically applied. This chapter introduces a (near) real-time method that uses inverse mapping models to update first-principles-based nonlinear dynamics models. The inverse mapping model infers a set of physically interpretable updating parameter values on the basis of a set of time-domain features extracted from measurements on the real system. Here, the inverse model is given by an artificial neural network that is trained using simulated data. By using a simple nonlinear multibody model, it is illustrated that this method is able to accurately and precisely update parameter values with low computational effort.
Originele taal-2 | Engels |
---|---|
Titel | Data Science in Engineering |
Subtitel | Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022 |
Redacteuren | Ramin Madarshahian, Francois Hemez |
Plaats van productie | Cham |
Uitgeverij | Springer |
Hoofdstuk | 1 |
Pagina's | 1-4 |
Aantal pagina's | 4 |
Volume | 9 |
ISBN van elektronische versie | 978-3-031-04122-8 |
ISBN van geprinte versie | 978-3-031-04121-1 |
DOI's | |
Status | Gepubliceerd - 2022 |
Evenement | 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022 - Rosen Plaza Hotel, Orlando, Verenigde Staten van Amerika Duur: 7 feb. 2022 → 10 feb. 2022 Congresnummer: 40 https://sem.org/imac |
Congres
Congres | 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022 |
---|---|
Verkorte titel | IMAC-XL |
Land/Regio | Verenigde Staten van Amerika |
Stad | Orlando |
Periode | 7/02/22 → 10/02/22 |
Internet adres |
Bibliografische nota
Funding Information:This publication is part of the project Digital Twin (project 2.1) with project number P18-03 of the research program Perspectief, which is (mainly) financed by the Dutch Research Council (NWO).