Model updating for digital twins using Gaussian process inverse mapping models

Bas Kessels, Julian Korver, Rob H.B. Fey, Nathan van de Wouw

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

171 Downloads (Pure)

Samenvatting

In engineering dynamics, model updating is typically applied to minimize the mismatch between a physical system and its digital twin. This paper proposes to use inverse mapping models, based on Gaussian Processes (GPs). The latter are trained offline using simulated data, enabling fast online updating of physically interpretable parameter values in first-principles-based nonlinear dynamics models. The GPs infer parameter values based on time-domain features measured on the real system. Additionally, GPs enables uncertainty quantification of the inferred parameter values. A nonlinear multibody model is used to illustrate the capability of this method to update parameter values, with high computational efficiency, and extract corresponding uncertainty measures.
Originele taal-2Engels
Aantal pagina's2
StatusGepubliceerd - 19 jul. 2022
Evenement10th European Nonlinear Dynamics Conference, ENOC 2022 - Université de Lyon, Lyon, Frankrijk
Duur: 17 jul. 202222 jul. 2022
Congresnummer: 10
https://enoc2020.sciencesconf.org/

Congres

Congres10th European Nonlinear Dynamics Conference, ENOC 2022
Verkorte titelENOC 2022
Land/RegioFrankrijk
StadLyon
Periode17/07/2222/07/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Model updating for digital twins using Gaussian process inverse mapping models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit