Model structure selection for switched NARX system identification: A randomized approach

Federico Bianchi, Valentina Breschi, Dario Piga, Luigi Piroddi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)

Samenvatting

The identification of switched systems is a challenging problem, which entails both combinatorial (sample-mode assignment) and continuous (parameter estimation) features. A general framework for this problem has been recently developed, which alternates between parameter estimation and sample-mode assignment, solving both tasks to global optimality under mild conditions. This article extends this framework to the nonlinear case, which further aggravates the combinatorial complexity of the identification problem, since a model structure selection task has to be addressed for each mode of the system. To solve this issue, we reformulate the learning problem in terms of the optimization of a probability distribution over the space of all possible model structures. Then, a randomized approach is employed to tune this distribution. The performance of the proposed approach on some benchmark examples is analyzed in detail.

Originele taal-2Engels
Artikelnummer109415
Aantal pagina's12
TijdschriftAutomatica
Volume125
DOI's
StatusGepubliceerd - mrt. 2021
Extern gepubliceerdJa

Bibliografische nota

Publisher Copyright:
© 2020 Elsevier Ltd

Vingerafdruk

Duik in de onderzoeksthema's van 'Model structure selection for switched NARX system identification: A randomized approach'. Samen vormen ze een unieke vingerafdruk.

Citeer dit