Model structure learning: A support vector machine approach for LPV linear-regression models

R. Toth, V. Laurain, W-X. Zheng, K. Poolla

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

54 Citaten (Scopus)
291 Downloads (Pure)

Samenvatting

Accurate parametric identification of Linear Parameter-Varying (LPV) systems requires an optimal prior selection of a set of functional dependencies for the parametrization of the model coefficients. Inaccurate selection leads to structural bias while over-parametrization results in a variance increase of the estimates. This corresponds to the classical bias-variance trade-off, but with a significantly larger degree of freedom and sensitivity in the LPV case. Hence, it is attractive to estimate the underlying model structure of LPV systems based on measured data, i.e., to learn the underlying dependencies of the model coefficients together with model orders etc. In this paper a Least-Squares Support Vector Machine (LS-SVM) approach is introduced which is capable of reconstructing the dependency structure for linear regression based LPV models even in case of rational dynamic dependency. The properties of the approach are analyzed in the prediction error setting and its performance is evaluated on representative examples.
Originele taal-2Engels
TitelProceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 12-15 December 2012, Orlando, Florida
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3192-3197
ISBN van geprinte versie978-1-61284-800-6
DOI's
StatusGepubliceerd - 2011
Evenement50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011) - Hilton Orlando Bonnet Creek, Orlando, Verenigde Staten van Amerika
Duur: 12 dec. 201115 dec. 2011
Congresnummer: 50
http://www.ieeecss.org/CAB/conferences/cdcecc2011/

Congres

Congres50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011)
Verkorte titelCDC-ECC 2011
Land/RegioVerenigde Staten van Amerika
StadOrlando
Periode12/12/1115/12/11
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Model structure learning: A support vector machine approach for LPV linear-regression models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit