Model Reduction by Moment Matching for Convergent Lur'e-Type Models

M.F. Shakib, G. Scarciotti, A.Y. Pogromsky, A. Pavlov, N. van de Wouw

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

This paper proposes an approach to model order reduction of convergent Lur'e-type models, which consist of a linear time-invariant (LTI) block and a static nonlinear block that is placed in feedback with the LTI block. In the proposed approach, we match a finite number of moments of the LTI block and keep the static nonlinear block to approximate the moments of the Lur'e-type model. The benefits of this approach are that the Lur'e-type structure is preserved after reduction, that the reduction method has an interpretation in terms of the frequency response function of the LTI block and that global exponential stability properties of the full-order model are preserved. The effectiveness of the approach is illustrated in a numerical example.

Originele taal-2Engels
Titel2021 American Control Conference (ACC)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's4459-4464
Aantal pagina's6
ISBN van elektronische versie9781665441971
DOI's
StatusGepubliceerd - 28 jul. 2021
Evenement2021 American Control Conference (ACC) - Virtual, Virtual, New Orleans, Verenigde Staten van Amerika
Duur: 25 mei 202128 mei 2021
http://acc2021.a2c2.org/

Congres

Congres2021 American Control Conference (ACC)
Verkorte titelACC 2021
Land/RegioVerenigde Staten van Amerika
StadVirtual, New Orleans
Periode25/05/2128/05/21
Internet adres

Bibliografische nota

Publisher Copyright:
© 2021 American Automatic Control Council.

Vingerafdruk

Duik in de onderzoeksthema's van 'Model Reduction by Moment Matching for Convergent Lur'e-Type Models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit