Model Predictive Control for Lane Merging Automation with Recursive Feasibility Guarantees

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

3 Citaten (Scopus)
66 Downloads (Pure)

Samenvatting

In order to make the complex driving task of merging safer, in this paper we consider the automated merging of an autonomous vehicle into a mixed-traffic flow scenario (i.e., traffic including autonomous and manually driven vehicles). In particular, we propose a novel MPC-based algorithm to perform a merging procedure from a double lane into a single lane and continue with (adaptive) cruise control ((A)CC) functionality after the merge. The proposed MPC balances fast progress along the path with comfort, while obeying safety and maximum allowed velocity bounds. Recursive feasibility, leading to safety and proper behavior, is guaranteed by the design of a proper terminal set, extending existing ones in the literature. The on-line MPC problem is translated into a mixed integer quadratic program (MIQP) that can be solved for global optimality. Through numerical simulations we demonstrate the behavior and effectiveness of the proposed MPC merging scheme.
Originele taal-2Engels
Pagina's (van-tot)4858-4864
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jul. 2023
Evenement22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan
Duur: 9 jul. 202314 jul. 2023
Congresnummer: 22
https://www.ifac2023.org/

Financiering

This work is part of the research program AMADeuS with project number 18489, which is partly financed by the Netherlands Organisation for Scientific Research (NWO).

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Model Predictive Control for Lane Merging Automation with Recursive Feasibility Guarantees'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit