Model learning predictive control for batch processes: A Reactive Batch Distillation Column Case Study

Alejandro Marquez Ruiz, M.A.C. Loonen, Bahadir Saltik, Leyla Ozkan (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)
43 Downloads (Pure)

Samenvatting

In this paper, we present the control of batch processes using Model Predictive Control (MPC) and iterative learning Control (ILC). Existing combinations of MPC and ILC are based on learning of the inputs of the process from previous batches for a fixed linear time-invariant model (LTI). However, batch processes are inherently time varying therefore, LTI models are limited in capturing the relevant dynamic behaviour for control. An attractive alternative is to use Linear Parameter Varying (LPV) models because of their ability to capture nonlinearities in the control of batch processes. Therefore, in this work we propose a novel method combining MPC and ILC based on LPV models and we call this method Model Learning Predictive Control (ML-MPC). Basically, the idea behind the method is to update the LPV model of the MPC iteratively, by using the repetitive behavior of the batch process. To this end, three different application-dependant options to estimate the parameters and disturbances of the model are proposed and are compared in simulation on a nonlinear batch reactor. Finally, the ML-MPC with one of the estimation methods is applied to an industrial Reactive Batch Distillation Column (RBD)
Originele taal-2Engels
Pagina's (van-tot)13737-13749
Aantal pagina's13
TijdschriftIndustrial and Engineering Chemistry Research
Volume58
Nummer van het tijdschrift30
DOI's
StatusGepubliceerd - 31 jul 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Model learning predictive control for batch processes: A Reactive Batch Distillation Column Case Study'. Samen vormen ze een unieke vingerafdruk.

Citeer dit