Model-Driven ML-Ops for Intelligent Enterprise Applications - Vision, Approaches and Challenges

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

17 Citaten (Scopus)

Samenvatting

This paper explores a novel vision for the disciplined, repeatable, and transparent model-driven development and Machine-Learning operations (ML-Ops) of intelligent enterprise applications. The proposed framework treats model abstractions of AI/ML models (named AI/ML Blueprints) as first-class citizens and promotes end-to-end transparency and portability from raw data detection- to model verification, and, policy-driven model management. This framework is grounded on the intelligent Application Architecture (iA 2) and entails a first attempt to incorporate requirements stemming from (more) intelligent enterprise applications into a logically-structured architecture. The logical separation is grounded on the need to enact MLOps and logically separate basic data manipulation requirements (data-processing layer), from more advanced functionality needed to instrument applications with intelligence (data intelligence layer), and continuous deployment, testing and monitoring of intelligent application (knowledge-driven application layer). Finally, the paper sets out exploring a foundational metamodel underpinning blueprint-model-driven MLOps for iA 2 applications, and presents its main findings and open research agenda.

Originele taal-2Engels
TitelBusiness Modeling and Software Design - 10th International Symposium, BMSD 2020, Proceedings
RedacteurenBoris Shishkov
UitgeverijSpringer
Pagina's169-181
Aantal pagina's13
ISBN van elektronische versie978-3-030-52306-0
ISBN van geprinte versie978-3-030-52305-3
DOI's
StatusGepubliceerd - 2020

Publicatie series

NaamLecture Notes in Business Information Processing
Volume391 LNBIP
ISSN van geprinte versie1865-1348
ISSN van elektronische versie1865-1356

Bibliografische nota

DBLP's bibliographic metadata records provided through http://dblp.org/search/publ/api are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.

Vingerafdruk

Duik in de onderzoeksthema's van 'Model-Driven ML-Ops for Intelligent Enterprise Applications - Vision, Approaches and Challenges'. Samen vormen ze een unieke vingerafdruk.

Citeer dit