Model-based attack detection scheme for smart water distribution networks

Chuadhry Mujeeb Ahmed, C.G. Murguia Rendon, Justin Ruths

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

56 Citaten (Scopus)

Samenvatting

In this manuscript, we present a detailed case study about model-based attack detection procedures for Cyber-Physical Systems (CPSs). In particular, using EPANET (a simulation tool for water distribution systems), we simulate a Water Distribution Network (WDN). Using this data and sub-space identification techniques, an input-output Linear Time Invariant (LTI) model for the network is obtained. This model is used to derive a Kalman filter to estimate the evolution of the system dynamics. Then, residual variables are constructed by subtracting data coming from EPANET and the estimates of the Kalman filter. We use these residuals and the Bad-Data and the dynamic Cumulative Sum (CUSUM) change detection procedures for attack detection. Simulation results are presented - considering false data injection and zero-alarm attacks on sensor readings, and attacks on control input - to evaluate the performance of our model-based attack detection schemes. Finally, we derive upper bounds on the estimator-state deviation that zero-alarm attacks can induce.
Originele taal-2Engels
TitelProceedings of the 2017 ACM on Asia Conference on Computer and Communications Security
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc
Pagina's101–113
Aantal pagina's13
ISBN van elektronische versie9781450349444
DOI's
StatusGepubliceerd - 1 apr. 2017
Extern gepubliceerdJa
EvenementASIA CCS '17: ACM on Asia Conference on Computer and Communications Security - Abu Dhabi, Verenigde Arabische Emiraten
Duur: 2 apr. 20176 apr. 2017

Congres

CongresASIA CCS '17: ACM on Asia Conference on Computer and Communications Security
Land/RegioVerenigde Arabische Emiraten
StadAbu Dhabi
Periode2/04/176/04/17

Vingerafdruk

Duik in de onderzoeksthema's van 'Model-based attack detection scheme for smart water distribution networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit