Mixed hybrid finite elements and streamline computation for the potential flow problem

E.F. Kaasschieter, A.J.M. Huijben

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

53 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

An important class of problems in mathematical physics involves equations of the form -¿ · (A¿¿) = f. In a variety of problems it is desirable to obtain an accurate approximation of the flow quantity u = -A¿¿. Such an accurate approximation can be determined by the mixed finite element method. In this article the lowest-order mixed method is discussed in detail. The mixed finite element method results in a large system of linear equations with an indefinite coefficient matrix. This drawback can be circumvented by the hybridization technique, which leads to a symmetric positive-definite system. This system can be solved efficiently by the preconditioned conjugate gradient method. After approximating u by the lowest-order mixed finite element method, streamlines and residence times can be determined easily and accurately by computations at the element level.
Originele taal-2Engels
Pagina's (van-tot)221-266
Aantal pagina's46
TijdschriftNumerical Methods for Partial Differential Equations
Volume8
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 1992

Vingerafdruk

Duik in de onderzoeksthema's van 'Mixed hybrid finite elements and streamline computation for the potential flow problem'. Samen vormen ze een unieke vingerafdruk.

Citeer dit