Mining economic sentiment using argumentation structures

A.C. Hogenboom, F.P. Hogenboom, U. Kaymak, P. Wouters, F.M.G. Jong, de

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureHoofdstukAcademic

1 Downloads (Pure)

Samenvatting

The recent turmoil in the financial markets has demonstrated the growing need for automated information monitoring tools that can help to identify the issues and patterns that matter and that can track and predict emerging events in business and economic processes. One of the techniques that can address this need is sentiment mining. Existing approaches enable the analysis of a large number of text documents, mainly based on their statistical properties and possibly combined with numeric data. Most approaches are limited to simple word counts and largely ignore semantic and structural aspects of content. Yet, argumentation plays an important role in expressing and promoting an opinion. Therefore, we propose a framework that allows the incorporation of information on argumentation structure in the models for economic sentiment discovery in text.
Originele taal-2Engels
TitelAdvances in Conceptual Modeling - Applications and Challenges (ER2010 Workshops ACM-L, CMLSA, CMS, DE@ER, FP-UML, SeCoGIS, WISM, Vancouver, BC, Canada, November 1-4, 2010, Proceedings)
RedacteurenJ. Trujillo, G. Dobbie, H. Kangassalo, S. Hartmann, M. Kirchberg, M. Rossi, I. Reinhartz-Berger, E. Zimányi, F. Frasincar
Plaats van productieBerlin
UitgeverijSpringer
Pagina's200-209
ISBN van geprinte versie978-3-642-16384-5
DOI's
StatusGepubliceerd - 2010

Publicatie series

NaamLecture Notes in Computer Science
Volume6413

Vingerafdruk

Duik in de onderzoeksthema's van 'Mining economic sentiment using argumentation structures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit