Microwave Digital Twin Prototype for Shoulder Injury Detection

Sahar Borzooei (Corresponding author), Pierre Henri Tournier, Victorita Dolean, Claire Migliaccio (Corresponding author)

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    Samenvatting

    One of the most common shoulder injuries is the rotator cuff tear (RCT). The risk of RCTs increases with age, with a prevalence of 9.7% in those under 20 years old and up to 62% in individuals aged 80 years and older. In this article, we present first a microwave digital twin prototype (MDTP) for RCT detection, based on machine learning (ML) and advanced numerical modeling of the system. We generate a generalizable dataset of scattering parameters through flexible numerical modeling in order to bypass real-world data collection challenges. This involves solving the linear system as a result of finite element discretization of the forward problem with use of the domain decomposition method to accelerate the computations. We use a support vector machine (SVM) to differentiate between injured and healthy shoulder models. This approach is more efficient in terms of required memory resources and computing time compared with traditional imaging methods.

    Originele taal-2Engels
    Artikelnummer6663
    Aantal pagina's17
    TijdschriftSensors
    Volume24
    Nummer van het tijdschrift20
    DOI's
    StatusGepubliceerd - 2 okt. 2024

    Bibliografische nota

    Publisher Copyright:
    © 2024 by the authors.

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Microwave Digital Twin Prototype for Shoulder Injury Detection'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit