(Meta) Kernelization

H.L. Bodlaender, F.V. Fomin, D. Lokshtanov, E. Penninkx, S. Saurabh, D.M. Thilikos

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

19 Downloads (Pure)


In a parameterized problem, every instance I comes with a positive integer k. The problem is said to admit a polynomial kernel if, in polynomial time, one can reduce the size of the instance I to a polynomial in k, while preserving the answer. In this work we give two meta-theorems on kernelzation. The first theorem says that all problems expressible in Counting Monadic Second Order Logic and satisfying a coverability property admit a polynomial kernel on graphs of bounded genus. Our second result is that all problems that have finite integer index and satisfy a weaker coverability property admit a linear kernel on graphs of bounded genus. These theorems unify and extend all previously known kernelization results for planar graph problems.
Originele taal-2Engels
StatusGepubliceerd - 4 apr. 2009
Extern gepubliceerdJa

Bibliografische nota

Complete version of the paper of FOCS 2009


Duik in de onderzoeksthema's van '(Meta) Kernelization'. Samen vormen ze een unieke vingerafdruk.

Citeer dit