2 Citaten (Scopus)
4 Downloads (Pure)

Samenvatting

We present a variational Bayesian identification procedure for polynomial NARMAX models based on message passing on a factor graph. Message passing allows us to obtain full posterior distributions for regression coefficients, precision parameters and noise instances by means of local computations distributed according to the factorization of the dynamic model. The posterior distributions are important to shaping the predictive distribution for outputs, and ultimately lead to superior model performance during 1-step ahead prediction and simulation.
Originele taal-2Engels
Titel2022 IEEE 61st Conference on Decision and Control (CDC)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's7309-7314
Aantal pagina's6
ISBN van elektronische versie978-1-6654-6761-2
DOI's
StatusGepubliceerd - 10 jan. 2023
Evenement2022 IEEE 61st Conference on Decision and Control (CDC) - The Marriott Cancún Collection, Cancun, Mexico
Duur: 6 dec. 20229 dec. 2022
Congresnummer: 61
https://cdc2022.ieeecss.org/

Congres

Congres2022 IEEE 61st Conference on Decision and Control (CDC)
Verkorte titelCDC 2022
Land/RegioMexico
StadCancun
Periode6/12/229/12/22
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Message passing-based system identification for NARMAX models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit