Mechanical characterization of anisotropic planar biological soft tissues using large indentation: A computational feasibility study

M.A.J. Cox, N.J.B. Driessen, C.V.C. Bouten, F.P.T. Baaijens

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

39 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

Traditionally, the complex mechanical behavior of planar soft biological tissues is characterized by (multi)axial tensile testing. While uniaxial tests do not provide sufficient information for a full characterization of the material anisotropy, biaxial tensile tests are difficult to perform and tethering effects limit the analyses to a small central portion of the test sample. In both cases, determination of local mechanical properties is not trivial. Local mechanical characterization may be performed by indentation testing. Conventional indentation tests, however, often assume linear elastic and isotropic material properties, and therefore these tests are of limited use in characterizing the nonlinear, anisotropic material behavior typical for planar soft biological tissues. In this study, a spherical indentation experiment assuming large deformations is proposed. A finite element model of the aortic valve leaflet demonstrates that combining force and deformation gradient data, one single indentation test provides sufficient information to characterize the local material behavior. Parameter estimation is used to fit the computational model to simulated experimental data. The aortic valve leaflet is chosen as a typical example. However, the proposed method is expected to apply for the mechanical characterization of planar soft biological materials in general.
Originele taal-2Engels
Pagina's (van-tot)428-436
TijdschriftJournal of Biomechanical Engineering : Transactions of the ASME
Volume128
Nummer van het tijdschrift3
DOI's
StatusGepubliceerd - 2006

Vingerafdruk

Duik in de onderzoeksthema's van 'Mechanical characterization of anisotropic planar biological soft tissues using large indentation: A computational feasibility study'. Samen vormen ze een unieke vingerafdruk.

Citeer dit