Mean-field optimal control and optimality conditions in the space of probability measures

Martin Burger, René Pinnau, Claudia Totzeck, Oliver Tse

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

11 Citaten (Scopus)
60 Downloads (Pure)

Samenvatting

We derive a framework to compute optimal controls for problems with states in the space of probability measures. Since many optimal control problems constrained by a system of ordinary differential equations modeling interacting particles converge to optimal control problems constrained by a partial differential equation in the mean-field limit, it is interesting to have a calculus directly on the mesoscopic level of probability measures which allows us to derive the corresponding first-order optimality system. In addition to this new calculus, we provide relations for the resulting system to the first-order optimality system derived on the particle level and the first-order optimality system based on L2-calculus under additional regularity assumptions. We further justify the use of the L2-adjoint in numerical simulations by establishing a link between the adjoint in the space of probability measures and the adjoint corresponding to L2-calculus. Moreover, we prove a convergence rate for the convergence of the optimal controls corresponding to the particle formulation to the optimal controls of the mean-field problem as the number of particles tends to infinity.

Originele taal-2Engels
Pagina's (van-tot)977-1006
Aantal pagina's30
TijdschriftSIAM Journal on Control and Optimization
Volume59
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 9 mrt. 2021

Bibliografische nota

Publisher Copyright:
© 2021 Society for Industrial and Applied Mathematics

Vingerafdruk

Duik in de onderzoeksthema's van 'Mean-field optimal control and optimality conditions in the space of probability measures'. Samen vormen ze een unieke vingerafdruk.

Citeer dit