Mask-MCNet: instance segmentation in 3D point cloud of intra-oral scans

Farhad Ghazvinian Zanjani, David Anssari Moin, Frank Claessen, Teo Cherici, Sarah Parinussa, Arash Pourtaherian, Sveta Zinger, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

23 Citaten (Scopus)

Samenvatting

Accurate segmentation of teeth in dental imaging is a principal element in computer-aided design (CAD) in modern dentistry. In this paper, we present a new framework based on deep learning models for segmenting tooth instances in 3D point cloud data of an intra-oral scan (IOS). At high level, the proposed framework, called Mask-MCNet, has analogy to the Mask R-CNN, which gives high performance on 2D images. However, the proposed framework is designed for the challenging task of instance segmentation of point cloud data from surface meshes. By employing the Monte Carlo Convolutional Network (MCCNet), the Mask-MCNet distributes the information from the processed 3D surface points into the entire void space (e.g. inside the objects). Consequently, the model is able to localize each object instance by predicting its 3D bounding box and simultaneously segmenting all the points inside each box. The experiments show that our Mask-MCNet outperforms state-of-the-art for IOS segmentation by achieving 98% IoU score.
Originele taal-2Engels
TitelMedical Image Computing and Computer Assisted Intervention – MICCAI 2019 - 22nd International Conference, Proceedings
Subtitel22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part V
RedacteurenDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
Plaats van productieCham
UitgeverijSpringer
Pagina's128-136
Aantal pagina's9
ISBN van elektronische versie978-3-030-32254-0
ISBN van geprinte versie978-3-030-32253-3
DOI's
StatusGepubliceerd - 2019
Evenement22nd International Conference on Medical Image Computing and Computer Assisted Intervention, (MICCAI2019) - Shenzhen, China
Duur: 13 okt. 201917 okt. 2019
https://www.miccai2019.org/

Publicatie series

NaamLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume11768 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres22nd International Conference on Medical Image Computing and Computer Assisted Intervention, (MICCAI2019)
Verkorte titelMICCAI 2019
Land/RegioChina
StadShenzhen
Periode13/10/1917/10/19
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Mask-MCNet: instance segmentation in 3D point cloud of intra-oral scans'. Samen vormen ze een unieke vingerafdruk.

Citeer dit