Markov properties of cluster processes

A.J. Baddeley, M.N.M. Lieshout, van, J. Møller

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    28 Citaten (Scopus)

    Samenvatting

    We show that a Poisson cluster point process is a nearest-neighbour Markov point process [2] if the clusters have uniformly bounded diameter. It is typically not a finite-range Markov point process in the sense of Ripley and Kelly [12]. Furthermore, when the parent Poisson process is replaced by a Markov or nearest-neighbour Markov point process, the resulting cluster process is also nearest-neighbour Markov, provided all clusters are non-empty. In particular, the nearest-neighbour Markov property is preserved when points of the process are independently randomly translated, but not when they are randomly thinned.
    Originele taal-2Engels
    Pagina's (van-tot)346-355
    Aantal pagina's10
    TijdschriftAdvances in Applied Probability
    Volume28
    Nummer van het tijdschrift2
    DOI's
    StatusGepubliceerd - 1996

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Markov properties of cluster processes'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit