Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy

Hanglong Wu, Hao Su, Rick R.M. Joosten, Arthur D.A. Keizer, Laura S. van Hazendonk, Maarten J.M. Wirix, Joseph P. Patterson, Jozua Laven, Gijsbertus de With, Heiner Friedrich (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

19 Citaten (Scopus)
112 Downloads (Pure)

Samenvatting

Liquid-Phase (Scanning) Transmission Electron Microscopy (LP-(S)TEM) has become an essential technique to monitor nanoscale materials processes in liquids in real-time. Due to the pressure difference between the liquid and the microscope vacuum, bending of the silicon nitride (SiNx) membrane windows generally occurs. This causes a spatially varying liquid layer thickness that makes interpretation of LP-(S)TEM results difficult due to a locally varying achievable resolution and diffusion limitations. To mediate these difficulties, it is shown: 1) how to quantitatively map liquid layer thickness for any liquid at less than 0.01 e Å−2 total dose; 2) how to dynamically modulate the liquid thickness by tuning the internal pressure in the liquid cell, co-determined by the Laplace pressure and the external pressure. It is demonstrated that reproducible inward bulging of the window membranes can be realized, leading to an ultra-thin liquid layer in the central window area for high-resolution imaging. Furthermore, it is shown that the liquid thickness can be dynamically altered in a programmed way, thereby potentially overcoming the diffusion limitations towards achieving bulk solution conditions. The presented approaches provide essential ways to measure and dynamically adjust liquid thickness in LP-(S)TEM experiments, enabling new experiment designs and better control of solution chemistry.

Originele taal-2Engels
Artikelnummer2001287
Aantal pagina's9
TijdschriftSmall Methods
Volume5
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 15 jun. 2021

Bibliografische nota

Publisher Copyright:
© 2021 The Authors. Small Methods published by Wiley-VCH GmbH

Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.

Financiering

H.W. and H.S. contributed equally to this work. The authors gratefully acknowledge Shell Global Solutions and the Dutch Research Council (NWO) for funding H.S. through the CHIPP program. H.W. was supported by the EU H2020 Marie Sklodowska‐Curie Action project “MULTIMAT” (676045). The authors thank Dr. Remco Fijneman and Jason Heinrichs (Eindhoven University of Technology) for the assistance with the slow evaporation experiments, and Joeri Opdam (Eindhoven University of Technology) for beneficial discussions and the help with creating 3D liquid cell images.

FinanciersFinanciernummer
H2020 Marie Skłodowska-Curie Actions
Shell Global Solutions B.V.
Horizon 2020 Framework Programme
H2020 Marie Skłodowska-Curie Actions676045
Technische Universiteit Eindhoven
Nederlandse Organisatie voor Wetenschappelijk Onderzoek

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Mapping and Controlling Liquid Layer Thickness in Liquid-Phase (Scanning) Transmission Electron Microscopy'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit