Magnetic configuration effects on the Wendelstein 7-X stellarator

The Wendelstein 7-X Team, A. Dinklage (Corresponding author), C. D. Beidler, P. Helander, G. Fuchert, H. Maaßberg, K. Rahbarnia, T. Sunn Pedersen, Y. Turkin, R. C. Wolf, T. Andreeva, S. Bozhenkov, B. Buttenschön, Y. Feng, J. Geiger, M. Hirsch, U. Höfel, M. Jakubowski, T. Klinger, J. Knauer & 31 andere A. Langenberg, H. P. Laqua, N. Marushchenko, A. Mollén, U. Neuner, H. Niemann, E. Pasch, L. Rudischhauser, H. M. Smith, T. Stange, G. Weir, T. Windisch, D. Zhang, S. Äkäslompolo, A. Ali, J. Alcuson Belloso, P. Aleynikov, K. Aleynikova, J. Baldzuhn, M. Beurskens, J. W. Oosterbeek, M. Schneider, T. Schröder, R. Schroeder, M. Sanchez, M. Scholz, H. Schmitz, I. Abramovic, J. Proll, H. Schumacher, J. Urban

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

23 Citaties (Scopus)

Uittreksel

The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τ E > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.

TaalEngels
Pagina's855-860
Aantal pagina's6
TijdschriftNature Physics
Volume14
Nummer van het tijdschrift8
DOI's
StatusGepubliceerd - 1 aug 2018

Vingerafdruk

stellarators
configurations
plasma currents
magnetic fields
magnetic mirrors
field coils
toroidal plasmas
power loss
high temperature plasmas
confining
fusion
orbits
scaling
optimization
causes

Citeer dit

@article{8a98953699c744fcb3e9cb0e7927a32f,
title = "Magnetic configuration effects on the Wendelstein 7-X stellarator",
abstract = "The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τ E > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.",
author = "{Wendelstein 7-X Team} and A. Dinklage and Beidler, {C. D.} and P. Helander and G. Fuchert and H. Maa{\ss}berg and K. Rahbarnia and {Sunn Pedersen}, T. and Y. Turkin and Wolf, {R. C.} and T. Andreeva and S. Bozhenkov and B. Buttensch{\"o}n and Y. Feng and J. Geiger and M. Hirsch and U. H{\"o}fel and M. Jakubowski and T. Klinger and J. Knauer and A. Langenberg and Laqua, {H. P.} and N. Marushchenko and A. Moll{\'e}n and U. Neuner and H. Niemann and E. Pasch and L. Rudischhauser and Smith, {H. M.} and T. Stange and G. Weir and T. Windisch and D. Zhang and S. {\"A}k{\"a}slompolo and A. Ali and {Alcuson Belloso}, J. and P. Aleynikov and K. Aleynikova and J. Baldzuhn and M. Beurskens and Oosterbeek, {J. W.} and M. Schneider and T. Schr{\"o}der and R. Schroeder and M. Sanchez and M. Scholz and H. Schmitz and I. Abramovic and J. Proll and H. Schumacher and J. Urban",
year = "2018",
month = "8",
day = "1",
doi = "10.1038/s41567-018-0141-9",
language = "English",
volume = "14",
pages = "855--860",
journal = "Nature Physics",
issn = "1745-2473",
publisher = "Nature Publishing Group",
number = "8",

}

Magnetic configuration effects on the Wendelstein 7-X stellarator. / The Wendelstein 7-X Team ; Abramovic, I.; Proll, J.

In: Nature Physics, Vol. 14, Nr. 8, 01.08.2018, blz. 855-860.

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

TY - JOUR

T1 - Magnetic configuration effects on the Wendelstein 7-X stellarator

AU - Wendelstein 7-X Team

AU - Dinklage,A.

AU - Beidler,C. D.

AU - Helander,P.

AU - Fuchert,G.

AU - Maaßberg,H.

AU - Rahbarnia,K.

AU - Sunn Pedersen,T.

AU - Turkin,Y.

AU - Wolf,R. C.

AU - Andreeva,T.

AU - Bozhenkov,S.

AU - Buttenschön,B.

AU - Feng,Y.

AU - Geiger,J.

AU - Hirsch,M.

AU - Höfel,U.

AU - Jakubowski,M.

AU - Klinger,T.

AU - Knauer,J.

AU - Langenberg,A.

AU - Laqua,H. P.

AU - Marushchenko,N.

AU - Mollén,A.

AU - Neuner,U.

AU - Niemann,H.

AU - Pasch,E.

AU - Rudischhauser,L.

AU - Smith,H. M.

AU - Stange,T.

AU - Weir,G.

AU - Windisch,T.

AU - Zhang,D.

AU - Äkäslompolo,S.

AU - Ali,A.

AU - Alcuson Belloso,J.

AU - Aleynikov,P.

AU - Aleynikova,K.

AU - Baldzuhn,J.

AU - Beurskens,M.

AU - Oosterbeek,J. W.

AU - Schneider,M.

AU - Schröder,T.

AU - Schroeder,R.

AU - Sanchez,M.

AU - Scholz,M.

AU - Schmitz,H.

AU - Abramovic,I.

AU - Proll,J.

AU - Schumacher,H.

AU - Urban,J.

PY - 2018/8/1

Y1 - 2018/8/1

N2 - The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τ E > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.

AB - The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τ E > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures.

UR - http://www.scopus.com/inward/record.url?scp=85047206432&partnerID=8YFLogxK

U2 - 10.1038/s41567-018-0141-9

DO - 10.1038/s41567-018-0141-9

M3 - Article

VL - 14

SP - 855

EP - 860

JO - Nature Physics

T2 - Nature Physics

JF - Nature Physics

SN - 1745-2473

IS - 8

ER -