Machine Learning to Predict Microvascular Obstruction and Left Ventricular Dysfunction in ST-Elevation Myocardial Infarction

Gregor Baer, Isel Grau, Chao Zhang, Pieter Van Gorp, Inge F. Wijnbergen, J.M. van Dantzig, B.R.G. (Guus) Brueren, Harrie C.M. van den Bosch, Pieter Jan Vlaar, W.A.L. (Pim) Tonino, Koen Teeuwen, Annemiek de Vos, Marcel van 't Veer, Colin Berry, Wikke Setz-Pels, Nico H.J. Pijls, Mohamed El Farissi, Luuk C. Otterspoor

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

Samenvatting

Purpose:
To evaluate the predictive accuracy of machine learning models to predict microvascular obstruction (MVO) at 3 days post-infarction, and impaired left ventricular ejection fraction (LVEF) at 3 months in patients with acute ST-elevation myocardial infarction (STEMI).
Methods:
A retrospective analysis was conducted in 200 patients with anterior STEMI from the European Intracoronary Cooling Evaluation (EURO-ICE) trial. Clinical and demographic data were employed to predict MVO and LVEF. Five machine learning models were assessed: Regularized Logistic Regression, Decision Tree, Explainable Boosting Machine, Random Forest, and CatBoost. Predictive accuracy was evaluated using AUC with 5-fold cross-validation with confidence intervals from DeLong’s method.
Results:
For MVO prediction, the machine learning models demonstrated AUCs ranging from 0.651 (Decision Tree [95% CI: 0.58-0.721]) to 0.799 (Random Forest [95% CI: 0.735-0.863]). Logistic Regression achieved 0.723 [95% CI: 0.648-0.797], Explainable Boosting Machine
0.777 [95% CI: 0.709-0.845], and CatBoost 0.789 [95% CI: 0.724-0.854] (Figure). In predicting LVEF, AUCs varied between 0.638 (Decision Tree [95% CI: 0.567-0.709]) and 0.731 (Random Forest [95% CI: 0.658-0.804]). Logistic Regression achieved 0.671 [95% CI:
0.592-0.75], Explainable Boosting Machine 0.707 [95% CI: 0.63-0.784], and CatBoost 0.725 [95% CI: 0.65-0.801].
Conclusion:
Machine learning models demonstrate moderate predictive performance for MVO and LVEF in STEMI patients, with MVO predictions being more accurate across all models. More complex models such as CatBoost and Random Forest outperformed simpler algorithms, highlighting their potential to enhance targeted patient care. Further validation, for instance,
with more external datasets, would further confirm these models' usefulness in clinical settings.
Originele taal-2Engels
Aantal pagina's1
StatusGepubliceerd - nov. 2024
EvenementNVVC Autumn Congress 2024: Congress of the Dutch Association for Cardiology (Nederlandse Vereniging voor Cardiologie (NVVC)) - Papendal, Arnhem, Nederland
Duur: 7 nov. 20248 nov. 2024

Congres

CongresNVVC Autumn Congress 2024
Verkorte titelNVVC Autumn Congress 2024
Land/RegioNederland
StadPapendal, Arnhem
Periode7/11/248/11/24

Vingerafdruk

Duik in de onderzoeksthema's van 'Machine Learning to Predict Microvascular Obstruction and Left Ventricular Dysfunction in ST-Elevation Myocardial Infarction'. Samen vormen ze een unieke vingerafdruk.

Citeer dit