Machine Learning Interpretability through Contribution-Value Plots

Onderzoeksoutput: Bijdrage aan congresPaperAcademic

2 Citaten (Scopus)
185 Downloads (Pure)

Samenvatting

The field of explainable artificial intelligence aims to help experts understand complex machine learning models. One key approach is to show the impact of a feature on the model prediction. This helps experts to verify and validate the predictions the model provides. However, many challenges remain open. For example, due to the subjective nature of interpretability, a strict definition of concepts such as the contribution of a feature remains elusive. Different techniques have varying underlying assumptions, which can cause inconsistent and conflicting views. In this work, we introduce Local and Global Contribution-Value plots as a novel approach to visualize feature impact on predictions and the relationship with feature value. We discuss design decisions, and show an exemplary visual analytics implementation that provides new insights into the model.
Originele taal-2Engels
Aantal pagina's5
DOI's
StatusGepubliceerd - 8 dec. 2020
EvenementThe 13th International Symposium on Visual Information Communication and Interaction (VINCI 2020) - Eindhoven, Nederland
Duur: 8 dec. 202010 dec. 2020
Congresnummer: 13
http://vinci-conf.org

Congres

CongresThe 13th International Symposium on Visual Information Communication and Interaction (VINCI 2020)
Verkorte titelVINCI
Land/RegioNederland
StadEindhoven
Periode8/12/2010/12/20
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Machine Learning Interpretability through Contribution-Value Plots'. Samen vormen ze een unieke vingerafdruk.

Citeer dit