Lower bounds for dynamic programming on planar graphs of bounded cutwidth

Bas A.M. van Geffen, Bart M.P. Jansen (Corresponding author), Arnoud A.W.M. de Kroon, Rolf Morel

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review


Many combinatorial problems can be solved in time O(ctw) on graphs of treewidth tw, for a problem-specific constant c. In several cases, matching upper and lower bounds on c are known based on the Strong Exponential Time Hypothesis (SETH). In this paper we investigate the complexity of solving problems on graphs of bounded cutwidth, a graph parameter that takes larger values than treewidth. We strengthen earlier treewidth-based lower bounds to show that, assuming SETH, Independent Set cannot be solved in O((2 − ε)ctw) time, and Dominating Set cannot be solved in O((3 − ε)ctw) time. By designing a new crossover gadget, we extend these lower bounds even to planar graphs of bounded cutwidth or treewidth. Hence planarity does not help when solving Independent Set or Dominating Set on graphs of bounded width. This sharply contrasts the fact that in many settings, planarity allows problems to be solved much more efficiently.

Originele taal-2Engels
Pagina's (van-tot)461-482
Aantal pagina's22
TijdschriftJournal of Graph Algorithms and Applications
Nummer van het tijdschrift3
StatusGepubliceerd - 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Lower bounds for dynamic programming on planar graphs of bounded cutwidth'. Samen vormen ze een unieke vingerafdruk.

Citeer dit