Long-Range First-Passage Percolation on the Torus

Remco van der Hofstad, Bas Lodewijks (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

21 Downloads (Pure)

Samenvatting

We study a geometric version of first-passage percolation on the complete graph, known as long-range first-passage percolation. Here, the vertices of the complete graph Kn are embedded in the d-dimensional torus Tnd, and each edge e is assigned an independent transmission time Te=‖e‖TndαEe, where Ee is a rate-one exponential random variable associated with the edge e, ‖·‖Tnd denotes the torus-norm, and α≥0 is a parameter. We are interested in the case α∈[0,d), which corresponds to the instantaneous percolation regime for long-range first-passage percolation on Zd studied by Chatterjee and Dey [14], and which extends first-passage percolation on the complete graph (the α=0 case) studied by Janson [24]. We consider the typical distance, flooding time, and diameter of the model. Our results show a 1, 2, 3-type result, akin to first-passage percolation on the complete graph as shown by Janson. The results also provide a quantitative perspective to the qualitative results observed by Chatterjee and Dey on Zd.

Originele taal-2Engels
Artikelnummer107
Aantal pagina's20
TijdschriftJournal of Statistical Physics
Volume191
Nummer van het tijdschrift9
DOI's
StatusGepubliceerd - sep. 2024

Bibliografische nota

Publisher Copyright:
© The Author(s) 2024.

Vingerafdruk

Duik in de onderzoeksthema's van 'Long-Range First-Passage Percolation on the Torus'. Samen vormen ze een unieke vingerafdruk.

Citeer dit